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Abstract. We consider a boundary value problem generated by the Sturm-Liouville equation
on a finite interval. Both the equation and the boundary conditions depend quadratically on the
spectral parameter. This boundary value problem occurs in the theory of small vibrations of a
damped string. The inverse problem, i.e., the problem of recovering the equation and the boundary
conditions from the given spectrum, is solved.
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In [1] we considered the boundary value problem

y′′ + λ2y − iλpy − qy = 0, (1)

y(0) = 0, (2)

y′(a) + (−mλ2 + iαλ + β)y(a) = 0, (3)

where λ is the spectral parameter, a > 0, p > 0, m > 0, α > 0, β ∈ R, and q(x) is a real
function belonging to the Sobolev space W 2

2 (0, a). The problem of small transverse vibrations of
an inhomogeneous smooth string in a medium with viscous damping (here p is proportional to
the viscous damping coefficient) can be reduced by a Liouville transformation (cf. [2]) to system
(1)–(3), where the left endpoint is fixed and the right endpoint bears a lumped mass proportional
to m and can move with viscous damping proportional to α in the direction orthogonal to the
equilibrium position of the string (cf. [1] and system (5)–(7) below). The spectrum of this problem
consists only of normal eigenvalues accumulating at infinity.

In [1], the inverse problem of recovering the sextuple {a, q, p,m, α, β} from the spectrum of
problem (1)–(3) was solved under the restrictive condition that there are no purely imaginary
eigenvalues, which corresponds to the weak damping of the corresponding quadratic operator pencil
(cf. [3]). For m = p = 0, the inverse problem with purely imaginary eigenvalues taken into account
was solved in [4]. In the present article, using the method of [4], we obtain the complete solution
of the inverse problem for system (1)–(3) with m, p > 0.

Definition 1. A sequence of complex numbers {λk}0�=k∈Z is said to be properly numbered if
1) Reλk � Reλl for all k > l;
2) λ−k = −λk for all λk that are not purely imaginary.
3) Each complex number occurs in the sequence at most finitely many times.
Otherwise, the numbering is arbitrary.
Definition 2. Let κ be a nonnegative integer. A properly numbered sequence {λk}0�=k∈Z is

said to belong to SHB−
κ if

1) All but κ terms of the sequence lie in the open upper half-plane.
2) Each term in the closed lower half-plane is purely imaginary and occurs only once. If κ � 1,

we denote these terms by λ−j = −i |λ−j | (j = 1, . . . , κ. We assume that |λ−j | < |λ−(j+1)| (j =
1, . . . , κ− 1).
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3) If κ � 1, then the numbers i |λ−j | (j = 1, . . . , κ) (with the exception of λ−1 if it is zero) are
not terms of the sequence.

4) If κ � 2, then the number of terms in each of the intervals (i |λ−j |, i |λ−(j+1)|) (j = 1, . . . ,
κ− 1) is odd.

5) If |λ−1| > 0, then the interval (0, i |λ−1|) contains no terms at all or an even number of
terms.

6) If κ � 1, then the interval (i |λ−κ|, i∞) contains an odd number of terms.
7) If κ = 0, then the sequence has an even or zero number of positive imaginary terms.
Definition 3. By B∓ we denote the class of sets {a, q, p,m, α, β} such that a > 0, p > 0,

m > 0, ±(α − pm) > 0, β ∈ R, and q is a real function in L2(0, a) with the property that the
self-adjoint operator A defined by

Af = −f ′′ + qf, D(A) = {f ∈ W 2
2 (0, a) : f ′(a) + βf(a) = 0, f(0) = 0},

is strictly positive. Moreover, if q belongs to the Sobolev space W 2
2 (0, a), then we say that the

sextuple {a, q, p,m, α, β} belongs to B0∓ . Furthermore, if {a, q, p,m, α, β} belongs to B+ (resp.,
B0

+) and α > 0, then we say that {a, q, p,m, α, β} belongs to B̂+ (resp., B̂0
+).

In the framework of the direct problem, we obtain the following two results, which strengthen
Theorem 3.1 in [1].

Theorem 4. Let {a, q,m, p, α, β} ∈ B0−. Then the spectrum of problem (1)–(3) satisfies the
following conditions:

1) {λk}0�=k∈Z ∈ SHB−
0 ,

2) {λk − (ip/2)}0�=k∈Z ∈ SHB−
κ for some κ � 0,

3) we have the following equation (asymptotically as k → ∞):

λk =
π(k − 1)

a
+

ip

2
+

p0

k − 1
+

ip1

(k − 1)2
+

p2

k3
+

bk

k3
, (4)

where p0, p2 ∈ R, p1 > 0, and
∑

0�=k∈Z
|bk|2 < ∞.

We note that the integer κ in 2) is equal to the number of nonpositive eigenvalues of the
self-adjoint operator

A1f = −f ′′ +
(
q − p2

4

)
f,

D(A1) =
{
f ∈ W 2

2 (0, a) : f ′(a) +
(
β − αp

2
+

mp2

4

)
f(a) = 0, f(0) = 0

}
.

Theorem 5. Let {a, q,m, p, α, β} ∈ B0
+. Then assertion 3) of Theorem 4 is true with p1 < 0

and assertion 2) is replaced by the following assertion:
2′) {(ip/2) − λk}0�=k∈Z ∈ SHB−

κ , where κ is the number of nonpositive eigenvalues of the
operator A1.

Moreover, if {a, q,m, p, α, β} ∈ B̂0
+, then assertion 1) of Theorem 4 also holds.

Let us now consider the inverse problem of reconstructing the sextuple {a, q,m, p, α, β} from
the spectrum of problem (1)–(3).

Theorem 6. Let a sequence {λk}0�=k∈Z of complex numbers satisfy the following conditions:
1) {λk}0�=k∈Z ∈ SHB−

0 ,
2) {λk − (ip/2)}0�=k∈Z ∈ SHB−

κ for some κ � 0,
3) condition 3) in Theorem 4 holds.
Then there exists a unique sextuple {a, q, p,m, α, β} ∈ B− such that {λk}0�=k∈Z is the spectrum

of problem (1)–(3) generated by {a, q, p,m, α, β}.
Theorem 7. Let a sequence {λk}0�=k∈Z satisfy the condition that {−λk+(ip/2)}0�=k∈Z ∈ SHB−

κ
for some κ � 0 as well as Eq. (4). Then there exists a unique sextuple {a, q, p,m, α, β} ∈ B+ such
that {λk}0�=k∈Z is the spectrum of the problem (1)–(3) generated by the sextuple {a, q, p,m, α, β}.
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We set

a = lim
k→∞

πn

λn
, p = −2i lim

k→∞

(
λn − π(n− 1)

a

)
, χ(λ) = lim

n→∞
∏

1�|k|�n

(
1 − λ

λk

)
.

Let us define

B0 = lim
n→∞

(
a

2πn
χ(θn)

)
, where θn =

ip

2
+

√(
(4n− 3)π

2a

)2

− p2

4
.

Then B0 = 0. We also set

B1 = −i lim
n→∞

(
1
B0

χ(θn) − π(4n− 3)
2a

)
.

Theorem 8. Suppose that a sequence {λk}0�=k∈Z satisfies the assumptions of Theorem 7 and
B1 < p. Then there exists a unique sextuple {a, q, p,m, α, β} ∈ B̂+ such that {λk}0�=k∈Z is the
spectrum of the problem (1)–(3) generated by the sextuple {a, q, p,m, α, β}.

By way of application, consider corollaries of Theorems 4 and 6. By Sl , where l > 0, we denote
the class of data {A(s), p, ν, µ} that satisfy the following conditions: A(s) ∈ W 2

2 (0, l) is a real-valued
function, A(s) � ε > 0, and p > 0, µ > 0, and ν > pµ are constants. Let S0

l be the subset of Sl

such that A(s) ∈ W 4
2 (0, l).

Corollary 9. Let {A(s), p, µ, ν} ∈ S0
l . Then the spectrum of the problem

d

ds

(
A(s)

dv

ds

)
+ λ2v − iλpv = 0, (5)

v(0) = 0, (6)

v′(l) + iλνv(l) − λ2µv(l) = 0 (7)

satisfies the assertions of Theorem 4.
Corollary 10. Let a sequence {λk}0�=k∈Z of complex numbers satisfy the conditions of Theo-

rem 6. Then for every l > 0 there exists a unique quadruple {A(s), p, µ, ν} ∈ Sl such that {λk}0�=k∈Z

is the spectrum of problem (5)–(7).
In the proofs, the results of [5–7] are used.
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