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a b s t r a c t

Certain parts of the Dirichlet–Dirichlet, Neumann–Dirichlet, Dirichlet–Neumann and
Neumann–Neumann spectra are used to find the potential of the Sturm–Liouville equation
on a finite interval. This problem possesses a unique solution. Conditions are found
necessary and sufficient for four sequences to be the corresponding parts of the four
spectra.
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1. Introduction

We consider the Sturm–Liouville boundary value problems with Dirichlet and Neumann boundary conditions on a finite
interval [0, a]. By the Dirichlet–Dirichlet problemwemean the onewith the Dirichlet conditions at both ends of the interval
(see problem (2.1), (2.2)), by Neumann–Dirichlet the problem with the Neumann condition at the left end and the Dirichlet
condition at the right end (see problem (2.1), (2.3)) and so on.

It is well known that the spectra of the Neumann–Dirichlet (or the Dirichlet–Neumann) and the Dirichlet–Dirichlet
boundary value problems generated by the same potential uniquely determine this potential in L1(0, a). Also it is known that
the spectra of two boundary value problems with the same Robin boundary condition at one of the ends and different Robin
conditions at the other end of the interval uniquely determine the potential and the constants in the boundary conditions.
These results are due to Borg [1] (see also [2–4]). If the boundary conditions are given data then the problemof recovering the
potential appears to be overdetermined (in the case of Robin conditions). One needs to know not all the eigenvalues of the
two spectra. This was shown in [5] and is sometimes called the ‘missing eigenvalue problem’ (see [6]). Further development
of this theory lies in the use of one spectrum together with the knowledge of a part of the potential [7,5,8,6,9].

Another direction of generalization of the above results is to use eigenvalues of more than two spectra to determine
the potential. In [10] it was shown that 2/3 part of the union of three spectra of boundary value problems with the same
boundary condition at one of the ends uniquely determine the potential. In [11] a similar but more general sufficient
condition of unique solvability was given for the case when the known eigenvalues were taken from n different spectra
(see [12] for a topical review).

In the present paper we consider real potentials from L2(0, a)which enables us to use interpolation in the Paley–Wiener
class using the results of [13,14]. We use eigenvalues of four boundary value problems, namely the Dirichlet–Dirichlet, the
Neumann–Dirichlet, the Dirichlet–Neumann and the Neumann–Neumann problem to recover the potential.

In Section 2 we describe some well known facts about interlacing properties of eigenvalues of the Dirichlet–Dirichlet,
the Neumann–Dirichlet, the Dirichlet–Neumann and the Neumann–Neumann problem and the eigenvalue asymptotics
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of these problems. We reformulate known results of [4] in the form of a theorem on solvability and uniqueness of
solution of a functional equation. This theorem is used in Section 3 where we prove that certain parts of the spectra of
the Dirichlet–Dirichlet, the Neumann–Dirichlet, the Dirichlet–Neumann and the Neumann–Neumann problem uniquely
determine the potential. We also characterize the given data of such inverse problem, i.e. we give conditions necessary and
sufficient for four sequences of real numbers to be the squares of eigenvalues of certain parts of the spectra of thementioned
problems and describe the procedure of recovering the potential. We use the method that was earlier used in [15] to solve
the three spectral inverse problem and in [16,17] to solve the inverse problem on a star graph.

2. Direct problems

Let us consider four boundary value problems with a real potential q ∈ L2(0, a): the Dirichlet–Dirichlet problem

−y′′
+ q(x)y = λ2y, x ∈ [0, a] (2.1)

y(0) = y(a) = 0, (2.2)

the spectrum of which we denote by {νk}
∞

−∞, k≠0 (ν−k = −νk), the Neumann–Dirichlet problem

−y′′
+ q(x)y = λ2y, x ∈ [0, a]

y′(0) = y(a) = 0, (2.3)

with the spectrum denoted by {µk}
∞

−∞, k≠0 (µ−k = −µk), the Dirichlet–Neumann problem

−y′′
+ q(x)y = λ2y, x ∈ [0, a]

y(0) = y′(a) = 0, (2.4)

with the spectrum which we denote by {κk}
∞

−∞, k≠0 (κ−k = −κk), and the Neumann–Neumann problem

−y′′
+ q(x)y = λ2y, x ∈ [0, a]

y′(0) = y′(a) = 0, (2.5)

with the spectrum which we denote by {ζk}
∞

−∞, k≠0 ∪ {ζ−0, ζ+0} (ζ−k = −ζk). This way of enumeration appears to be
convenient.

Let us denote by sj(λ, x) the solution of the Sturm–Liouville equation (2.1) which satisfies the conditions sj(λ, 0) =

s′j(λ, 0)− 1 = 0 and by cj(λ, x) the solution which satisfies the conditions cj(λ, 0)− 1 = c ′

j (λ, 0) = 0. According to [4]

s(λ, x) =
sin λx
λ

+

 x

0
K(x, t)

sin λt
λ

dt

=
sin λx
λ

− K(x, x)
cos λx
λ2

+

 x

0
Kt(x, t)

cos λt
λ2

dt, (2.6)

where

K(x, t) = K̃(x, t)− K̃(x,−t), Kt(x, t) =
∂K(x, t)
∂t

and K̃(x, t) is the solution of the integral equation

K̃(x, t) =
1
2

 x+t
2

0
q(s)ds +

 x+t
2

0
dα
 x−t

2

0
q(α + β)K̃(α + β, α − β)dβ.

The solution K̃(x, t) possesses partial derivatives of the first order each belonging to L2(0, a) as a function of each of its
variables. Moreover, K(x, 0) = 0 and

K(x, x) =
1
2

 x

0
q(t)dt.

It is clear also that

s′(λ, x) = cos λa + K(x, x)
sin λa
λ

+

 x

0
Kx(x, t)

sin λt
λ

, (2.7)

c(λ, x) = cos λx +

 x

0
B(x, t) cos λtdt

= cos λx + B(x, x)
sin λx
λ

+

 x

0
Bt(x, t)

cos λt
λ

dt, (2.8)
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c ′(λ, x) = −λ sin λx + B(x, x) sin λx +

 x

0
Bt(x, t) cos λtdt, (2.9)

B(x, t) = K̃(x, t)+ K̃(x,−t),

B(x, x) =
1
2

 x

0
q(t)dt.

Using (2.6)–(2.9) we obtain

s(λ, a) =
sin λa
λ

− K
cos λa
λ2

+
ψ1(λ)

λ2
,

c(λ, a) = cos λa + K
sin λa
λ

+
ψ2(λ)

λ
,

s′(λ, a) = cos λa + K
sin λa
λ

+
ψ3(λ)

λ
,

c ′(λ, a) = −λ sin λa + K cos λa + ψ4(λ),

where K def
= K(a, a), ψj ∈ La (j = 1, 2, 3, 4) and La is the Paley–Wiener class of entire functions of exponential type ≤ a

which belong to L2(−∞,∞) for real λ. Moreover, ψ1(0) = K , ψ2(0) = ψ3(0) = 0 otherwise s(λ, a), s′(λ, a) or c(λ, a)
would have a pole at λ = 0. By the Paley–Wiener theorem La- functions are the Fourier images of all square summable
functions supported on [0, a]. It is clear that {νk}∞−∞, k≠0 is the set of zeros of s(λ, a), {µk}

∞

−∞, k≠0 is the set of zeros of c(λ, a),
{κk}

∞

−∞, k≠0 is the set of zeros of s′(λ, a) and {ζk}
∞

−∞, k≠0 ∪ {ζ−0, ζ+0} is the set of zeros of c ′(λ, a). Let us mention one more
well known result (see, e.g. [4]). The eigenvalues of problems (2.1), (2.2); (2.1), (2.3); (2.1), (2.4) and (2.1), (2.5) behave
asymptotically as follows:

νk =
k→+∞

πk
a

+
K
πk

+
α
(1)
k

k
, (2.10)

µk =
k→+∞

π(k − 1/2)
a

+
K
πk

+
α
(2)
k

k
, (2.11)

κk =
k→+∞

π(k − 1/2)
a

+
K
πk

+
α
(3)
k

k
, (2.12)

ζk =
k→+∞

πk
a

+
K
πk

+
α
(4)
k

k
, (2.13)

where {α
(j)
k }

∞

k=1 ∈ l2 for j = 1, 2, 3, 4. Also it is known that

−∞ < µ2
1 < ν21 < µ2

2 < ν22 < · · · (2.14)

−∞ < κ2
1 < ν21 < κ2

2 < ν22 < · · · (2.15)

−∞ < ζ 2
+0 < µ2

1 < ζ 2
1 < µ2

2 < · · · (2.16)

and

− ∞ < ζ 2
+0 < κ2

1 < ζ 2
1 < κ2

2 < · · · . (2.17)

The following theorem is a reformulation of Theorem 3.4.1 in [4].

Theorem 2.1 ([4]). For two sequences {νk}
∞

−∞, k≠0 and {µk}
∞

−∞, k≠0 of numbers to be the spectra of Neumann–Dirichlet and
Dirichlet–Dirichlet problems generated by the same real potential q ∈ L2(0, a) it is necessary and sufficient that the following
conditions should be satisfied.
1. µ−k = −µk, ν−k = −νk.
2. The sequences are interlaced as in (2.14).
3. Asymptotics (2.10) and (2.11) are true.

The following theorem is a direct consequence of Theorem 2.1.

Theorem 2.2. Let f1 and g1 be real entire functions of exponential type a of the form

g1(λ) =
sin λa
λ

− K
cos λa
λ2

+
ψ̃1(λ)

λ2
, (2.18)

f1(λ) = cos λa + K
sin λa
λ

+
ψ̃2(λ)

λ
, (2.19)
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where K is a constant, and ψ1 andψ2 belong to La. Let the zeros {ak}∞−∞, k≠0 of f1 be interlaced with the zeros of {bk}∞−∞, k≠0 of
g1 in the following way:

−∞ < a21 < b21 < a22 < b22 < · · · (a−k = −ak, b−k = −bk).

Then equation

f1(λ)g2(λ)− f2(λ)g1(λ) = 1 (2.20)

possesses a unique solution (f2, g2) in the class of pairs of real entire functions of exponential type a which satisfy the condition

g2(λ) = cos λa + K
sin λa
λ

+
ψ̃3(λ)

λ
, (2.21)

where ψ̃3 ∈ La.

Proof. According to [4, Lemma 3.4.2] Eqs. (2.18) and (2.19) imply

bk =
k→+∞

πk
a

+
K
πk

+
βk

k

where {βk}
∞

k=1 ∈ l2,

ak =
k→+∞

π(k − 1/2)
a

+
K
πk

+
αk

k

where {αk}
∞

k=1 ∈ l2 This means the sequences {ak}∞−∞, k≠0 and {bk}∞−∞, k≠0 satisfy conditions of Theorem 2.1 and, therefore,
there exists a real function q ∈ L2(0, a) for which {bk}∞−∞, k≠0 is the spectrum of the Dirichlet–Dirichlet problem and
{ak}∞−∞, k≠0 is the spectrum of the Neumann–Dirichlet problem. The functions g1 and f1 are the corresponding characteristic
functions of these two problems, i.e. g1(λ) = s(λ, a) and f1(λ) = c(λ, a). If we solve the Dirichlet–Neumann and
Neumann–Neumann problems with the obtained potential then the characteristic functions of these problems are s′(λ, a)
and c ′(λ, a). The Lagrange identity is

c(λ, a)s′(λ, a)− s(λ, a)c ′(λ, a) = 1 = f1(λ)s′(λ, a)− g1(λ)c ′(λ, a).

This means that there exists a solution to (2.20). Let us show that it is unique. Suppose there exists another solution
(u, v) ≢ (s′(λ, a), c ′(λ, a)) to (2.20) and such that

u = cos λa + K
sin λa
λ

+
ψ̃3(λ)

λ
,

where ψ̃3 ∈ La. Then

f1(λ)(s′(λ, a)− u(λ))− g1(λ)(c ′(λ, a)− v(λ)) = 0

or if (c ′(λ, a)− v(λ)) ≢ 0

g1(λ)
f1(λ)

=
ψ̃4(λ)

λ(c ′(λ, a)− v(λ))

where ψ̃4 ∈ La. The last equation is false because g1 is a sine-type function while ψ3 is not.
Let us recall that a function f is said to be of sine-type (see [13]), if its zeros are all distinct and there exist positive numbers

m,M and p such that

me|Im λ|a
≤ |f (λ)| ≤ Me|Im λ|a

for |Im λ| > p.
Thus, (c ′(λ, a)− v(λ)) ≡ 0 and, consequently, s′(λ, a)− u(λ) ≡ 0. Theorem is proved. �

3. Inverse problems

Theorem 3.1. Let {kj}j∈A1⊂N, {pj}j∈A2⊂N, {rj}j∈A3⊂N and {sj}j∈A4⊂N be sequences of natural numbers such that {kj}j∈A1⊂N ∩

{pj}j∈A2⊂N = ∅, {kj}j∈A1⊂N ∪ {pj}j∈A2⊂N = N, {rj}j∈A3⊂N ∩ {sj}j∈A4⊂N = ∅, {rj}j∈A3⊂N ∪ {sj}j∈A4⊂N = N.
Let four sequences of real numbers {ν2kj}, {ζ

2
pj}, {µ

2
rj} and {κ2

sj} be given unions of which {ξ 2k }
∞

k=1 = {ν2kj} ∪ {ζ 2
pj} and

{υ2
k }

∞

k=1 = {µ2
rj} ∪ {κ2

sj} being reenumerated monotonically are interlaced:

−∞ < υ2
1 < ξ 21 < υ2

2 < ξ 22 < · · ·
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and behave asymptotically as follows:

ξk =
k→+∞

πk
a

+
A
πk

+
β
(1)
k

k
, (ξ−k = −ξk), (3.1)

υk =
k→+∞

π

k −

1
2


a

+
A
πk

+
β
(2)
k

k
, (υ−k = −υk), (3.2)

where A is a real constant, {β
(j)
k }

∞

k=1 ∈ l2 for j = 1, 2. Then there exists a unique real potential q ∈ L2(0, a) such that
{νkj} (ν−kj = −νkj) are eigenvalues of problem (2.1), (2.2), {µrj} (µ−rj = −µrj) are eigenvalues of problem (2.1), (2.3),
{κsj} (κ−sj = −ζsj) are eigenvalues of problem (2.1), (2.4) and {ζ 2

pj} (ζ−pj = −ζpj) are eigenvalues of problem (2.1), (2.5).

Proof. Let us notice that the sequences {ξk}
∞

−∞, k≠0 and {υk}
∞

−∞, k≠0 satisfy conditions of Theorem 2.1. Therefore, there
exists a real potential q̂ ∈ L2(0, a) for which {ξk}

∞

−∞, k≠0 is the Dirichlet–Dirichlet spectrum and {υk}
∞

−∞, k≠0 is the
Neumann–Dirichlet spectrum. We do not need to construct this potential but we need to find the Dirichlet–Neumann and
Neumann–Neumann spectra generated by q̂.

For the sake of simplicity let us assume that 0 ∉ {ξ 2k }
∞

k=1 ∪ {υ2
k }

∞

k=1. Otherwise, we can shift the spectral parameter
λ2 → λ2 + c.

Using {υk}
∞

−∞,k≠0 we construct

φ̂(λ) =

∞
k=1


a

π

k −

1
2

2

(υ2
k − λ2).

Then according to [4, Lemma 3.4.2] we have

φ̂(λ) = cos λa + A
sin λa
λ

+
τ̂2(λ)

λ
, (3.3)

where τ̂2 ∈ La and the constant A can be found as

A =
2π
a

lim
p→+∞


p φ̂


π

2p +

1
2


a


.

The function

λω̂(λ)
def
= λa

∞
k=1

 a
πk

2
(ξ 2k − λ2)

is sine-type. To prove it we notice that according to Lemma 3.4.2 in [4] it is of the form

ω̂(λ) =
sin λa
λ

− A
cos λa
λ2

+
τ̂1(λ)

λ2
, (3.4)

where τ̂1 ∈ La. Then taking into account that ω̂(0) ≠ 0 we conclude that λω̂(λ) is a sine-type function.
We choose {ξk}

∞

−∞,k≠0 ∪ {0} as the nodes of interpolation for finding a Paley–Wiener function τ̂3(λ) and as the values at
the nodes we choose

τ̂3(ξk) = ξk


φ̂−1(ξk)− cos ξka − A

sin ξka
ξk


for all k ≠ 0 and we set τ̂3(0) = 0 for ξ0

def
= 0. Using (3.3) we obtain

τ̂3(ξk) = ξk


1

cos ξka + A sin ξka
ξk

+
τ̂2(ξk)
ξk

− cos ξka − A
sin ξka
ξk


. (3.5)

To estimate asymptotics of τ̂3(ξk)we notice that (see Lemma 1.4.3 in [4])

{τ̂2(ξk)}
∞

k=1 ∈ l2. (3.6)
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Using (3.1) we arrive at

sin ξka = (−1)k
Aa
πk

+
δ
(1)
k

k
, (3.7)

cos ξka = (−1)k +
δ
(2)
k

k
, (3.8)

where

δ
(j)
k

∞

k=−∞, k≠0
belong to l2 for j = 1, 2.

Using (3.6)–(3.8) we obtain from (3.5):

{τ̂3(ξk)}
∞

−∞,k≠0 ∈ l2. (3.9)

Therefore, taking into account (3.9) we use Theorem A in [13] (see also [14]) and find

τ̂3(λ) = λω̂(λ)

k=+∞
k=−∞

τ̂3(ξk)

dλω̂(λ)
dλ


λ=ξk

(λ− ξk)
. (3.10)

The series on the right hand side of (3.10) converges uniformly on any compact subdomain of C and in the norm of
L2(−∞,+∞) for real λ to a function which belongs to La.

Let us notice that according to [13] the obtained τ̂3(λ) is the unique solution of the following interpolation problem:
given the nodes {ξk}

∞
−∞

and the values {τ̂3(ξk)}
∞
−∞

at these nodes, find τ̂3.
Now, we can construct the function

Φ̂(λ) = cos λa + A
sin λa
λ

+
τ̂3(λ)

λ
, (3.11)

which pretends to be the characteristic function to problem (2.1), (2.4). Here
 a
0 q̂(x)dx = A.

Let ŝ(λ, x) be the solution of Eq. (2.1) with the potential q̂ which satisfies conditions ŝ(λ, 0) = ŝ′(λ, 0) − 1 = 0 and let
ŝ′(λ, a) be the value of its derivative at x = a. It is clear that

ŝ(λ, a) ≡ ω̂(λ), (3.12)

ŝ(ξk, a) = 0 (3.13)

and

ŝ′(λ, a) = cos λa + A
sin λa
λ

+
τ̃3(λ)

λ
, (3.14)

where τ̃3 ∈ La.
Let ĉ(λ, x) be the solution of Eq. (2.1) with the potential q̂ which satisfies conditions ĉ(λ, 0) − 1 = ĉ ′(λ, 0) = 0, Then

ĉ(λ, a) = φ̂(λ) and due to (3.12) and the Lagrange identity we have

ĉ(λ, a)ŝ′(λ, a)− ŝ(λ, a)ĉ ′(λ, a) = φ̂(λ)ŝ′(λ, a)− ω̂(λ)ĉ ′(λ, a) = 1. (3.15)

Using (3.13) we obtain from (3.15)

φ̂(ξk)ŝ′(ξk, a) = 1 (3.16)

and due to (3.16)

τ̃3(ξk) = ξk


φ−1(ξk)− cos ξka − A

sin ξka
ξk


,

for all k ≠ 0 and τ̃3(0) = 0 since ŝ′(λ, a) is an entire function.
Thus, τ̃3 is a solution of the same interpolation problem as τ3, the problem having a unique solution (see Theorem A

in [13]). We conclude that τ̃3 ≡ τ̂3 and, therefore

Φ̂(λ) ≡ ŝ′(λ, a) (3.17)

where ŝ′(λ, a) is the characteristic function of the Dirichlet–Neumann problem with the potential q̂. We denote by
{ηk}

∞

−∞, k≠0 the zeros of ŝ′(λ, a). Then

Φ̂(λ) =

∞
k=1


a

π

k −

1
2

2

(η2k − λ2).
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Then due to (2.13)

ηk =
k→+∞

π

k −

1
2


a

+
A
πk

+
γ
(1)
k

k
, (3.18)

where {γ
(1)
k }

∞

−∞, k≠0 ∈ l2. Now (3.15) implies

F̂(λ) def
=
φ̂(λ)Φ̂(λ)− 1

ω̂(λ)
≡ ĉ ′(λ, a), (3.19)

and, consequently,

F̂(λ) = −λ sin λa + A cos λa + τ̂4(λ) (3.20)

with τ̂4 ∈ La.
Denote by {ϵk}

∞

−∞, k≠0 ∪ {ϵ+0, ϵ−0} (ϵ−k = −ϵk for k = +0, 1, 2, 3, . . .) the zeros of ĉ ′(λ, a). Then due to (2.14) we have

ϵk =
k→+∞

πk
a

+
A
πk

+
γ
(2)
k

k
, (3.21)

where {γ
(2)
k }

∞

−∞, k≠0 ∈ l2 and due to (2.14)–(2.17):

−∞ < ϵ2
+0 < min{υ2

1 , η
2
1} ≤ max{υ2

1 , η
2
1} < min{ϵ21 , ξ

2
1 } ≤ max{ϵ21 , ξ

2
1 } < min{υ2

2 , η
2
2} ≤ max{υ2

2 , η
2
2} < · · · .

Since each of the intervals (max{υ2
k , η

2
k},min{υ2

k+1, η
2
k+1}) (k = 1, 2, . . .) contains exactly one element of the sequence

{ξ 2k }
∞

k=1 and exactly one element of the sequence {ϵ2k }
∞

k=1 while the interval (−∞,min{υ2
1 , η

2
1}) contains only ϵ

2
+0 we can

identify the elements of these sequences as follows:

ϵk
def
= νk for k ∈ {pj} (ν−k = −νk),

ϵk
def
= ζk for k ∈ {kj} ∪ {0} (ζ−k = −ζk).

Each of the intervals (max{ϵ2k , ξ
2
k },min{ϵ2k+1, ξ

2
k+1}) (k = 1, 2, . . .) as well as the interval (ϵ2

+0,min{ϵ21 , ξ
2
1 }) contains

exactly one element of the sequence {υ2
k }

∞

k=1 and exactly one element of the sequence {η2k}
∞

k=1. Thus we can identify the
elements of these sequences as follows:

ηk
def
= µk for k ∈ {sj} (µ−k = −µk),

ηk
def
= κk for k ∈ {rj} (κ−k = −κk).

Thus, we have two sequences {ν2k }
∞

k=1 and {µ2
k}

∞

k=1 which satisfy the condition

−∞ < µ2
1 < ν21 < µ2

2 < ν22 < · · · .

Due to (3.1) and (3.21) the set {νk}
∞

−∞, k≠0 satisfies the condition

νk =
k→+∞

πk
a

+
A
πk

+
σ
(1)
k

k
,

while due to (3.2) and (3.18) {µk}
∞

−∞, k≠0 satisfies

µk =
k→+∞

π

k −

1
2


a

+
A
πk

+
σ
(2)
k

k
,

where {σ
(j)
k }

∞

−∞, k≠0 ∈ l2 for j = 1, 2.
Thus, the sets {νk}

∞

−∞, k≠0 and {µk}
∞

−∞, k≠0 satisfy the conditions of Theorem 2.1 and, therefore, there exists a unique real
function q(x) ∈ L2(0, a) which generates Dirichlet–Dirichlet and Neumann–Dirichlet problems on [0, a] with the spectra
{νk}

∞

−∞, k≠0 and {µk}
∞

−∞, k≠0, respectively.
We can find q via procedure [4] described below. Without loss of generality let us assume that µ2

1 > 0, otherwise we
apply a shift of the spectral parameter. The function

e(λ) = (φ(λ)+ iλω(λ))e−iλa
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where

λω(λ)
def
= λa

∞
k=1

 a
πk

2
(ν2k − λ2), (3.22)

φ(λ) =

∞
k=1


a

π

k −

1
2

2

(µ2
k − λ2), (3.23)

is the Jost-function of the corresponding prolonged Sturm–Liouville problem on the semi-axis:

−y′′
+ Q (x)y = λ2y, x ∈ [0,∞),

y(0) = 0

with

Q (x) =


q(x) for x ∈ [0, a]
0 for x ∈ (a,∞).

Then we construct the S-function of the problem on the semi-axis:

S(λ) =
e(λ)
e(−λ)

and the function

G(x) =
1
2π


∞

−∞

(1 − S(λ))eiλxdx.

Solving the Marchenko equation

K(x, t)+ G(x + t)+


∞

x
K(x, s)G(s + t)ds = 0

we find K(x, t) and the potential:

q(x) = 2
dK(x, x)

dx
, x ∈ [0, a]

which is a real function andbelongs to L2(0, a). If s(λ, x) and c(λ, x) are the corresponding solutions of (2.1)with thepotential
q(x) then c(λ, a) = φ(λ) and s(λ, a) = ω(λ). It means that s(νk, a) = 0 for all k ∈ {kj} and c(µk, a) = 0 for all k ∈ {rj}. It
remains to prove that s′(κk, a) = 0 for all k ∈ {sj} and c ′(ζk, a) = 0 for all k ∈ {pj}.

Denote

F(λ) = a(ζ 2
+0 − λ2)

∞
k=1

 a
πk

2
(ζ 2

k − λ2).

It is clear that

F(λ) = −λ sin λa + A cos λa + τ4(λ), (3.24)

where τ4 ∈ La. We also consider the function

Φ(λ)
def
=

∞
k=1


a

π

k −

1
2

2

(κ2
k − λ2)

which admits the representation

Φ(λ) = cos λa + A
sin λa
λ

+
τ3(λ)

λ
(3.25)

where τ3 ∈ La.
Setting ζ+0 = −ζ−0

def
= ϵ+0 = −ϵ−0 we see that by the definitions {ν2k }

∞

k=1 ∪ {ζ 2
k }

∞

k=+0 = {ξ 2k }
∞

k=1 ∪ {ϵ2k }
∞

k=+0. That means
that the sets of zeros of the functions ω(λ)F(λ) and ω̂(λ)F̂(λ) coincide. Using (3.4), (3.20), (3.24) and representation

ω(λ) =
sin λa
λ

+ A
cos λa
λ2

+
τ(λ)

λ2
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which follows from (3.22) we obtain

ω(λ)F(λ) ≡ ω̃(λ)F̃(λ). (3.26)

By the definitions {µ2
k}

∞

k=1 ∪ {κ2
k }

∞

k=1 = {υ2
k }

∞

k=1 ∪ {η2k}
∞

k=1. Thus the sets of zeros of the functions φ̂(λ)Φ̂(λ) and φ(λ)Φ(λ)
coincide. Using (3.3), (3.11), (3.25) and the representation

φ(λ) = cos λa + A
sin λa
λ

+
τ2(λ)

λ
,

where τ2 ∈ La which follows from (3.23) we conclude that

Φ(λ)φ(λ) ≡ Φ̃(λ)φ̃(λ). (3.27)

Substituting (3.17) and (3.19) into (3.15) and using (3.26) and (3.27) we obtain

φ(λ)Φ(λ)− ω(λ)F(λ) = 1.

On the other hand, the Lagrange identity is

φ(λ)s′(λ, a)− ω(λ)c ′(λ, a) = 1.

According to Theorem 2.2 the equation

φ(λ)u(λ)− ω(λ)v(λ) = 1

possesses a unique solution and therefore F(λ) ≡ c ′(λ, a) and Φ(λ) = s′(λ, a). Therefore, c ′(ζk, a) = 0 for all k ∈ {pj} and
s′(κk, a) for all k ∈ {sj}.

Uniqueness of the solution of our inverse problem follows from uniqueness of the choice of µk for k ∈ {sj} and νk for
k ∈ {pj} and uniqueness of the potential corresponding to {µk}

∞

k=1 and {νk}
∞

k=1. Theorem is proved. �

Remark. According to (2.10)–(2.17) the conditions of Theorem 3.1 are necessary and sufficient.
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