Metadata of the article that will be visualized online

Article Title	Crystallographic texture of aluminum alloy samples produced by additive friction-stirred deposition	
Journal Name	Materials Science	
CopyrightHolder	Springer Science+Business Media, LLC, part of Springer Nature (This will be the copyright line in the final PDF)	
Corresponding Author	Family name:	Usov
	Particle:	
	GivenName:	V. V.
	Suffix:	
	Organization:	Ministry of Education and Science of Ukraine
	Division:	South Ukrainian National Pedagogical University named after K. D. Ushinsky
	Address:	Odesa, Ukraine
	Email:	valentinusov67@gmail.com
Author	Family name:	Pavlenko
	Particle:	
	GivenName:	D. V.
	Suffix:	
	Organization:	Ministry of Education and Science of Ukraine
	Division:	National University "Zaporizhzhia Polytechnic"
	Address:	Zaporizhzhia, Ukraine
	Email:	dvp1977dvp@gmail.com
Author	Family name:	Shkatulyak
	Particle:	
	GivenName:	N. M.
	Suffix:	
	Organization:	Ministry of Education and Science of Ukraine
	Division:	South Ukrainian National Pedagogical University named after K. D. Ushinsky
	Address:	Odesa, Ukraine
	Email:	shkatulyak56@gmail.com
Author	Family name:	lovchev
	Particle:	
	GivenName:	S. I.
	Suffix:	
	Organization:	Ministry of Education and Science of Ukraine
	Division:	Odessa National Maritime University
	Address:	Odesa, Ukraine
	Email:	sovchev.odessa@gmail.com
Schedule	Received:	25 June 2024
	Revised:	19 September 2024
	Accepted:	12 November 2024
	Published online:	

Abstract	The crystallographic texture formation in the AK9ch aluminum alloy (9.6% Si; 0.3% Mg; 0.1% Fe; 0.1% Mn, Al balance) specimens manufactured using the Additive Friction Stir Deposition (AFS-D) technology at room temperature is investigated. The analysis was conducted using inverse pole figures (IPFs) obtained by X-ray diffraction methods. The results reveal the presence of shear, torsion, deformation, and recrystallization texture components in both types of specimens. The texture of horizontal and vertical samples differs in the set of texture components and the character of their dispersion. The texture intensity of both types of specimens is ill-defined. This testifies to the possibility of manufacturing the AK9ch alloy components using AFS-D technology with reduced anisotropy.	
Keywords sepa- rated by '-'	Additive friction stirs deposition - Crystallographic texture - Aluminum alloy - Inverse pole figures - Property - Anisotropy	
Notes	Translated from <i>Fizyko-Khimichna Mekhanika Materialiv</i> , Vol. 61, No. 1, pp. 19–24, January–February, 2025	

Please note: Images appear in color online but will be printed in black and white

Crystallographic texture of aluminum alloy samples produced by additive friction-stirred deposition

🔍 V. V. Usov 🗅 · D. V. Pavlenko 🕒 · N. M. Shkatulyak 🕩 · S. I. Iovchev 🗅

Received: 25 June 2024 / Revised: 19 September 2024 / Accepted: 12 November 2024 © Springer Science+Business Media, LLC, part of Springer Nature

Abstract

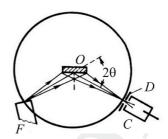
The crystallographic texture formation in the AK9ch aluminum alloy (9.6% Si; 0.3% Mg; 0.1% Fe; 0.1% Mn, Al balance) specimens manufactured using the Additive Friction Stir Deposition (AFS-D) technology at room temperature is investigated. The analysis was conducted using inverse pole figures (IPFs) obtained by X-ray diffraction methods. The results reveal the presence of shear, torsion, deformation, and recrystallization texture components in both types of specimens. The texture of horizontal and vertical samples differs in the set of texture components and the character of their dispersion. The texture intensity of both types of specimens is ill-defined. This testifies to the possibility of manufacturing the AK9ch alloy components using AFS-D technology with reduced anisotropy.

Keywords Additive friction stirs deposition · Crystallographic texture · Aluminum alloy · Inverse pole figures · Property · Anisotropy

Introduction

Additive friction deposition (AFS-D) is one of the promising methods for producing high-strength products from metallic materials [1–3]. It combines the concept of friction stirring with material feeding to produce components specific to a particular object [4]. The use of this technology makes it possible to manufacture products from not only existing metals and alloys but also to create new composite compounds and architectural materials with specified properties [3, 5, 6]. Unlike other AM (Additive Manufacturing) technologies, AFS-D methods usually do not require additional processing (hot isostatic pressing), which reduces production time and energy consumption.

The AFS-D method, patented in 2014 [7], is still in its early stages of development [8]. Interest in it is growing, particularly in the study of microstructure and crystallographic texture, which affects the anisotropy of the manufactured parts' properties. To date, there are a number of studies devoted to texture formation in blanks obtained by the AFS-D method. In the AA2219 aluminum alloy samples, the texture changed along the cross-section, which correlated with the strength characteristics [9]. The AA6061-T6 alloy was studied in [10], and different types of textures were established depending on the processing conditions, which affected the degree of recrystallization of the material. The study of the AA2024 alloy demonstrated a weakly pronounced texture [11], which changed in the direction of construction, and in [12], the AA7050 alloy was investigated, and a variation in texture was established for different sections and layers of the structure. The 6061-T651 alloy


Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 61, No. 1, pp. 19–24, January–February, 2025

Material Sciences

https://doi.org/10.1007/s11003-025-00957-0

Fig. 1 Bragg-Brentano geometry for texture measurement. F is X-ray tube focus; O is flat sample; D is counter slit; C is counter; 2θ is reflection angle

showed different texture components, which affected the anisotropy of the yield point [13]. The study of the AA5083 alloy demonstrated the possibility of obtaining isotropic properties due to the formation of a specific crystallographic texture [14].

These and a number of other studies [15, 16] emphasize the importance of studying crystallographic texture for optimizing the characteristics of 3D-printed workpieces for aerospace and missile applications. However, the question of the texture formation of AK9 aluminum alloy workpieces depending on the direction of construction, its influence on the anisotropy of physical and mechanical properties, the composition and number of texture components, etc., is still open for discussion.

The work aims to investigate the crystallographic texture of the AK9ch aluminum alloy samples obtained by the friction additive deposition technology in the horizontal and vertical directions of construction.

Research methods

The construction of workpieces by friction stirring using the AFS-D method essentially consists of cutting a thin layer from the end of a rotating consumable rod, which is pressed against the substrate, and is described in detail in [8]. Cylindrical rods of diameter 10 mm made of AK9ch alloy (9.6% Si; 0.3% Mg; 0.1% Fe; 0.1% Mn; Al balance) are the starting material. To construct the samples using the AFS-D method, the rods were fixed on a special spring mandrel mounted on a vertical milling machine. They were deformed with a pressure of 5 GPa and torsion for 5 full revolutions at room temperature. The torsion speed was 1 rot/min.

The use of a spring mandrel made it possible to adjust and maintain at a constant level the pressing force applied by the end of the consumable rod to the substrate. A steel bar was used as the substrate.

The deposited samples were manufactured by the AFS-D method with longitudinal (horizontal samples) and transverse (vertical) tool feed. With a favorable combination of temperature, force, and kinematic parameters of the process, high-strength volumetric samples were obtained in both cases. Three layers were formed by deposition, which provided sufficient sample thickness for texture studies.

The crystallographic texture was studied by the X-ray method [17, 18] in the usual geometry with Bragg-Brentano focusing (Fig. 1; [19]) with the construction of inverted pole figures (IPF) in the direction of the normal (ND) to the plane of the deposition surface of the samples (IPF ND) and in the transverse direction (TD) perpendicular to their end surface (IPF TD).

The IPF method was used for texture analysis, since the studied samples had small geometric dimensions, which made it impossible to photograph straight pole figures. Samples without texture (reference) were manufactured from fine recrystallized chips of the alloy under study, which were obtained using fine sawing. This chip was annealed in a vacuum furnace at a temperature of 150 °C for 1h for recrystallization. Then, mixed with PVA glue, it was applied to a flat glass substrate. After the glue dried, a reference sample without texture was obtained. The thickness of the chip layer was approx. 2 mm.

A set of samples in the form of a package of 3 mm wide strips glued together, cut from samples obtained by the AFS-D method, were used to record the IPF of the DN. The defective surface layer was polished by chemical etching to a depth of 0.1 mm to prevent undesirable effects on the texture of the samples. The results

Springer

of X-ray θ –2 θ diffraction of the deposited samples and the corresponding standards in filtered Mo K_{α} -radiation on a DRON-3m diffractometer under the same geometric conditions of the survey were used to construct the corresponding IPFs.

The polar density P_i is proportional to the ratio of the intensity of the *i*-th diffraction line in the textured sample I_i to the intensity of the corresponding line I_R in the sample without texture:

$$P_i = \frac{K \times I_i}{I_R}. (1)$$

Here, the Morris normalization factor K [20] was determined by the formula

$$K = \frac{1}{\sum_{\Delta} A_i \times \left(\frac{I_i}{I_R}\right)},\tag{2}$$

where A_i is the statistical weights of the *i*-th reflex on the IPF. The coefficients A_i , given in [14], are calculated as a percentage of the surface area of the stereographic triangle around the normal to the *i*-th reflex of the corresponding inverted polar figure of the IPF. Therefore, the pole density is defined as:

$$P_i = \frac{I_i}{\sum_{\Delta} A_i \times \left(\frac{I_i}{I_R}\right)}.$$
 (3)

Results and discussion

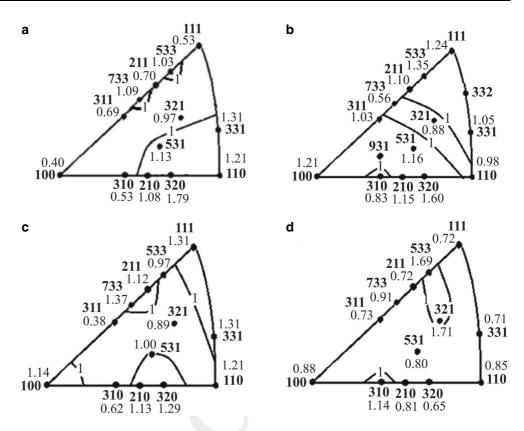
Workpiece manufacturing means the deposition of thin concentric layers of rotating tool material on a substrate through friction and heating during contact with the substrate, and then with the previous layer at each subsequent step.

The formation of two zones, conventionally called the main and peripheral zones, was observed at the tool exit point [8]. The crystallographic texture for the main zone of samples obtained by the AFS-D method with longitudinal feed was studied, where the stability of the material structure was achieved.

After preparation of the horizontal sample surface for study of its texture, the total average thickness and length of the layer were 2.5 and 12 mm, respectively. The vertical samples had a close to cylindrical shape. The diameter and height of the vertical samples were 10 and 4 mm, respectively.

The IPF of the samples of the studied alloy obtained by the AFS-D method are presented in Fig. 2. As we can see, P_i on the IPF is small, which indicates a weakly expressed texture. The P_i density on the IPF of the ND, recorded in the plane of the sample with vertical tool feed during AFS-D (Fig. 2a), has a wide scattering region near the pole <110>, covering the poles <331>, <531>, <210>, <320>. In addition, an increased density in the poles <533>, <733> is observed.

The crystallite orientations in the transverse direction of this sample are divided into two broad regions with increased pole density, as can be seen from the IPF of the TD recorded from the side surface (Fig. 2b) of this sample. The poles <211>, <533>, and <331> bound one region of increased density around the pole <111>. The second region around <100> is bounded by <311>, <320>, <210>.


The analysis showed that the texture consists of a combination of weak shear components (110) [100] (Goss texture) and a rotated torsion texture (110) [111], deformation textures (110) [112] (brass-like), (135) [211] (copper-like), and recrystallization texture (120) [211], and (320) [332].

The pole density on the IFR of ND, recorded in the plane of the sample with longitudinal tool feed during AFS-D (Fig. 2c), has several regions with increased values. These are regions of orientation around the poles <111>, <331>, <210>, <320>, <100>. The regions of increased density on the IPF of TD, recorded from

Material Sciences Springer

Author's Proof

Fig. 2 Inverse pole figures (IPF) of AK9ch alloy samples obtained by AFS-D method with **a**, **b** transverse and **c**, **d** longitudinal tool feed: **a**, **c** IPF of normal direction; **b**, **d** IPF of transversal direction. Darker numbers indicate poles, lighter numbers indicate pole densities

the side surface of this sample (Fig. 2d), are more compact. They are localized around the poles <533>, and <321>, as well as around the pole <310>.

The analysis showed that the texture can be described by a combination of weak components of the rotated torsion texture (111) [132], the rotated deformation texture (112) [312], and the recrystallization texture (001) [310].

Thus, the textures of the samples of the studied aluminum alloy, obtained by the AFS-D method with longitudinal (horizontal samples) and transverse (vertical) tool feed, differ both in the set of texture components and in the scattering character. Literature analysis [9–14] showed that the type of texture and the character of its distribution depend on the deposition parameters. However, since the texture of both samples of the studied aluminum alloy is weakly expressed, it should be expected that the anisotropy of their physicomechanical properties should be insignificant, as previously noted [9–12, 14]. This is in contrast with the results in [21, 22] on the influence of 3D printing on the texture and anisotropy of metal alloys obtained by additive technology. During 3D printing of alloy samples based on titanium [21], nickel [16], obtained in the horizontal and vertical directions of construction, there is a rather pronounced texture and, accordingly, anisotropy of elastic and mechanical properties.

Comparison of the texture of the studied aluminum alloy samples with the results of the textures of samples of other aluminum alloys obtained by the AFS-D method showed their similarity [9–14]. The general fact is that after such treatment, the texture of samples of different aluminum alloys contains components of torsion, shear, deformation, and recrystallization, since these processes are typical of additive deposition by friction with stirring.

Conclusions

The crystallographic texture of the AK9ch aluminum alloy samples obtained by the additive friction deposition (AFS-D) technology at room temperature with longitudinal (horizontal samples) and transverse (vertical) feed of the consumable tool differs in both the set of texture components and the character of scattering. The texture of the sample obtained by the AFS-D method with vertical feed of the consumable tool consists of a combination of weak shear components (110) [100] (Goss texture) and a rotated torsion texture (110) [111], deformation textures (110) [112] (brass-like), (135) [211] (copper-like), and recrystallization texture (120) [211] and (320) [332]. The texture of the sample obtained by the AFS-D method with horizontal feed of the consumable tool can be described as a combination of weak components of the rotated torsion texture (111) [132], the rotated deformation texture (112) [312], and the recrystallization texture (001) [310]. The texture of the studied samples of AK9 aluminum alloy obtained by AFS-D technology is similar to the textures of other aluminum alloys after deposition by AFS-D methods and contains components of torsion, shear, deformation, and recrystallization, since these processes are typical of friction stir additive deposition. Despite the difference in the textures of the studied alloy samples obtained by the AFS-D method in the horizontal and vertical directions of the structure, texture is weakly expressed in both samples, so a slight anisotropy of physicomechanical properties should be expected. The intensity, composition, and number of texture components depend on the technological parameters of deposition: the process speed, the pressure of the consumable rod, the speed of its rotation, and the substrate during longitudinal movement. Therefore, the prospect of further research is to study the influence of these parameters.

Funding All authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author Contribution All authors have contributed equally to the work, authors also read and approved the final manuscript.

Conflict of interest The authors declare that they have no potential conflict of interest in relation to the study in this paper. The authors have no relevant financial or non-financial interests to disclose.

References

- 1. S. Palanivel, R.S. Mishra, Building without melting: a short review of friction-based additive manufacturing techniques. Int J Addit Subtract Mater Manuf 1(1), 82–103 (2017). https://doi.org/10.1504/IJASMM.2017.082991
- 2. H.Z. Yu, M.E. Jones, G.W. Brady, R.J. Griffiths, D. Garcia, H.A. Rauch, C.D. Cox, N. Hardwick, Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scr Mater **153**, 122–131 (2018). https://doi.org/10.1016/j.scriptamat.2018.03.025
- 3. M.K. Kulekci, U. Esme, B. Buldum, Critical analysis of friction stir-based manufacturing processes. Int J Adv Manuf Technol 85, 1687–1712 (2016). https://doi.org/10.1007/s00170-015-8071-5
- 4. J. Griffiths, M.E.J. Perry, J.M. Sietins, Y.H. Zhu, N. Hardwick, C.D. Cox, H.A. Rauch, H.Z. Yu, A perspective on solid-state additive manufacturing of aluminum matrix composites using MELD. J Mater Eng Perform 28, 648–656 (2019). https://doi.org/10.1007/s11665-018-3649-3
- 5. E.M. Sefene, State-of-the-art of selective laser melting process: a comprehensive review. J Manuf Syst **63**, 250–274 (2022). https://doi.org/10.1016/j.jmsy.2022.04.002
- 6. M. Li, Development and prospect of friction surfacing technology, in *Proc. 5th int. Symp. on knowledge acquisition and modeling* (Atlantis Press, 2015), pp. 244–246. https://doi.org/10.2991/kam-15.2015.67
- _7. J.P. Schultz, K.D. Creehan, US patent US8636194B2 2014. https://patents.justia.com/patent/8636194
- 8. D.V. Pavlenko, D.V. Tkach, Y.V. Vyshnepolskyi, M.O. Schetinina, O.F. Tarasov, High-pressure torsion: A simulation approach for additive friction stir deposition processes. Adv Mater Sci Eng (2024). https://doi.org/10.1155/2024/7424560
- 9. O.G. Rivera, P.G. Allison, L.N. Brewer, O.L. Rodriguez, J.B. Jordon, T. Liu, W.R. Whittington, R.L. Martens, Z. Mc-Clelland, C.J.T. Mason, L. Garcia, J.Q. Su, N. Hardwick, Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition. Mater Sci Eng A 724, 547–558 (2018). https://doi.org/10.1016/j.msea.2018.03.088

- 10. R.J. Griffiths, D. Garcia, J. Song, V.K. Vasudevan, M.A. Steiner, W. Cai, H.Z. Yu, Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: process–microstructure linkages. Materialia 15, 100967 (2021). https://doi.org/10.1016/j.mtla.2021.100967
- 41. M.E. Perry, R.J. Griffiths, D. Garcia, J.M. Sietins, Y. Zhu, H.Z. Yu, Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition. Addit Manuf 35, 101293 (2020). https://doi.org/10.1016/j.addma.2020.101293
- 12. C.J.T. Mason, R.I. Rodriguez, D.Z. Avery, B.J. Phillips, B.P. Bernarding, M.B. Williams, S.D. Cobbs, J.B. Jordon, P.G. Allison, Process-structure-property relations for as-deposited solid-state additively manufactured high-strength aluminum alloy. Addit Manuf 40, 101879 (2021). https://doi.org/10.1016/j.addma.2021.101879
- 13. W. Tang, X. Yang, C. Tian, Y. Xu, Interfacial grain structure, texture and tensile behavior of multilayer deformation-based additively manufactured Al 6061 alloy. Mater Charact **196**, 112646 (2023). https://doi.org/10.1016/j.matchar.2023.
- 14. A. Sharifi, F. Khodabakhshi, A.P. Gerlich, Suppressing anisotropy in additive manufacturing by shear crystallographic texture development during multi-layer friction stir deposition. Mater Sci Eng A **903**, 146640 (2024). https://doi.org/10.1016/j.msea.2024.146640
- 15. V.V. Úsov, N.M. Shkatuliak, N.I. Rybak, M.O. Tsarenko, D.V. Pavlenko, D.V. Tkach, O.O. Pedash, Texture and anisotropy of mechanical properties of Inconel 718 alloy products obtained by 3D-printing from powders. Met Noveishie Tekhnol 45(1), 111–125 (2023). https://doi.org/10.15407/mfint.45.01.0111
- 16. V.V. Usov, N.M. Shkatuliak, D.V. Pavlenko, O.M. Tkachuk, Anisotropy of elastic properties of Inconel 718 alloy specimens obtained by 3D printing. Mater Sci 59(4), 414–419 (2023). https://doi.org/10.1007/s11003-024-00792-9
- 17. S.S. Gorelik, L.N. Rastorguev, Y.A. Skakov, *Roentgenography and electron-optical analysis* (Metallurgiya, Moscow, 1981)
 - –18. M.M. Borodkina, E.N. Spector, *Roentgenographic analysis of the metals and alloys texture* (Metallurgiya, Moscow, 1981)
- 19., X-ray diffraction (XRD). https://ywcmatsci.yale.edu/xrd
- 20. P.R. Morris, Reducing the effects of nonuniform pole distribution in inverse pole figure studies. J Appl Phys **30**(4), 595–596 (1959). https://doi.org/10.1063/1.1702413
- 21. S.M. Lavrys, I.M. Pohrelyuk, K.S. Shliakhetka, Corrosion resistance of additively manufactured titanium alloys in hydrochloric acid. Mater Sci **58**(5), 585–590 (2023). https://doi.org/10.1007/s11003-023-00702-5
- 22. S.V. Adzhamskyi, G.A. Kononenko, R.V. Podolskyi, Mechanical properties of Inconel 718 alloy produced using selective laser melting technology with dynamic focusing on application surface. Mater Sci **59**(4), 420–425 (2023). https://doi.org/10.1007/s11003-024-00793-8
 - Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
- Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer

Authors and Affiliations

_V. V. Usov¹ · D. V. Pavlenko² · N. M. Shkatulyak¹ · S. I. lovchev³

∠ V. V. Usov

valentinusov67@gmail.com

D. V. Pavlenko

dvp1977dvp@gmail.com

N. M. Shkatulyak

shkatulyak56@gmail.com

S. I. Iovchev

sovchev.odessa@gmail.com

South Ukrainian National Pedagogical University named after K. D. Ushinsky, Ministry of Education and Science of Ukraine, Odesa, Ukraine

National University "Zaporizhzhia Polytechnic", Ministry of Education and Science of Ukraine, Zaporizhzhia, Ukraine

Odessa National Maritime University, Ministry of Education and Science of Ukraine, Odesa, Ukraine

Author queries

In this citation the value for access date is missing. Please provide the value.

2 page 6

In this citation the value for access date is missing. Please provide the value.