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ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS WITH SLOWLY

VARYING DERIVATIVES OF THE SECOND ORDER DIFFERENTIAL

EQUATIONS WITH THE PRODUCT OF DIFFERENT TYPES OF

NONLINEARITIES

Signi�cantly nonlinear non-autonomous di�erential equations have begun to appear in prac-

tice from the second half of the nineteenth century in the study of real physical processes in

atomic and nuclear physics, and also in astrophysics. The di�erential equation, that contains in

its right part the product of regularly and rapidly varying nonlinearities of an unknown function

and its �rst-order derivative is considered in the paper. Partial cases of such equations arise,

�rst of all, in the theory of combustion and in the theory of plasma. The �rst important results

on the asymptotic behavior of solutions of such equations have been obtained for a second-order

di�erential equation, that contains the product of power and exponential nonlinearities in its

right part. For, no such equations have been obtained before. According to this, the study of

the asymptotic behavior of solutions of nonlinear di�erential equations of the second order of

general case, that contain the product of regularly and rapidly varying nonlinearities as the

argument tends either to zero or to in�nity, is actual not only from the theoretical but also

from the practical point of view. The asymptotic representations, as well as the necessary and

su�cient conditions of the existence of Pω(Y0, Y1,±∞)-solutions of such equations are inves-

tigated in the paper. This class of solutions is the one of the most di�cult of studying due

to the fact that, by the a priori properties of the functions of the class, their second-order

derivatives aren't explicitly expressed through the �rst-order derivative. The results obtained

in this article supplement the previously obtained results for Pω(Y0, Y1,±∞)-solutions of the

investigated equation concerning the su�cient conditions of their existence and quantity.
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Introduction

The following second order di�erential equation

y′′ = α0p(t)ϕ0(y)ϕ1(y
′) (1)

ÓÄÊ 517.925

2010 Mathematics Subject Classi�cation: 34A34, 34C41, 34Å99.

c©Chepok O. O., 2020



Solutions of equations with the product of different types of nonlinearities 11

is considered. In this equation α0 ∈ {−1; 1}, functions p : [a, ω[→]0,+∞[, (−∞ < a < ω ≤
+∞) and ϕi : ∆Yi →]0,+∞[ (i ∈ {0, 1}) are continuous, Yi ∈ {0,±∞}, ∆Yi is either the

interval [y0i , Yi[ or the interval ]Yi, y
0
i ]. If Yi = +∞ (Yi = −∞) we put y0i > 0 (y0i < 0).

We also suppose that function ϕ1 is a regularly varying as y → Y1 function of index σ1
([9], p.10-15), function ϕ0 is twice continuously di�erentiable on ∆Y0 and satis�es the next

conditions

ϕ′0(y) 6= 0 as y ∈ ∆Y0 , lim
y→Y0
y∈∆Y0

ϕ0(y) ∈ {0,+∞}, lim
y→Y0
y∈ ∆Y0

ϕ0(y)ϕ′′0(y)

(ϕ′0(y))
2 = 1. (2)

It follows from the above conditions (2) that the function ϕ0 and its derivative of the �rst

order are rapidly varying functions as the argument tends to Y0 ([9], p.15). Thus, the

investigated di�erential equation contains regularly and rapidly varying nonlinearities in its

right-hand side.

Partial cases of the equation (1), which contains both power-type and exponential-type

nonlinearities in the right-hand side, are found in practice, in particular, in the theory of

combustion and in the theory of plasma. For example, during investigations of distribution

of electrostatic potential in a cylindrical plasma volume of combustion products it have been

aroused the nonlinear di�erential equation that can be reduced to the next one:

y′′ = α0p(t)e
σy|y′|λ. (3)

The equation (3) is an equation of the type (1), in which ϕ1(z) = |z|λ, ϕ0(z) = eσz,

σ, λ ∈ R, σ 6= 0, function p : [a, ω[→]0,+∞[ (−∞ < a < ω ≤ +∞) is a continuously

di�erentiable function. Under some restrictions on the function p(t) certain results for the

asymptotic behavior of all regular solutions of this equation have been obtained in works of

Evtukhov V. Ì. and Dric N. G.(look [5], for example).

Thus, the equation (1) is a natural generalization of equation (3) and plays an important

role in the development of a qualitative theory of di�erential equations.

The main aim of the article is the investigation of conditions of the existence of following

class of solutions of the equation (1).

De�nition 1. The solution y of the equation (1), that is de�ned on the interval [t0, ω[⊂ [a, ω[,

is called Pω(Y0, Y1, λ0)-solution (−∞ ≤ λ0 ≤ +∞), if the following conditions take place

y(i) : [t0, ω[−→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t)y(t)
= λ0.

This class of solutions was de�ned in the work of V. M. Evtukhov [3] for the n-th order dif-

ferential equations of Emden-Fowler type and was concretized for the second-order equation.

Due to the asymptotic properties of functions in the class of Pω(Y0, Y1, λ0)-solutions [6],

every such solution belongs to one of four non-intersecting sets according to the value of

λ0 : λ0 ∈ R\{0, 1}, λ0 = 0, λ0 = 1, λ0 = ±∞. In this article we consider the case λ0 = ±∞
of such solutions, every Pω(Y0, Y1,±∞)-solution and its derivative satisfy the following limit

relations

lim
t↑ω

πω(t)y′(t)

y(t)
= 1, lim

t↑ω

πω(t)y′′(t)

y′(t)
= 0. (4)
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This class Pω(Y0, Y1,±∞)-solutions for equations of the form (1) is one of the most

di�cult to study due to the fact that the second-order derivative is not explicitly expressed

through the �rst-order derivative. From (4) it means that the derivative of the �rst order of

each such solution is a slowly varying function as t ↑ ω.
From the conditions (2) it also follows that the function ϕ0 and its �rst-order derivative

belong to the class ΓY0(Z0), that was introduced in the works of V. M. Evtukhov and

A. G. Chernikova [4] as a generalization of the class Γ (L. Khan, see, for example, [1], p.

75). The properties of the class ΓY0(Z0) were used to get our results.

For the equation (1), in previous works [2] the necessary and su�cient conditions for the

existence of the investigated class of Pω(Y0, Y1,±∞)-solutions were established in case of the

existence of some in�nite limit. In this work we establish the su�cient conditions for the

existence of Pω(Y0, Y1,±∞)-solutions of the equation (1) in case this limit equals nonzero

real number. We also have found the asymptotic representations of such solutions and its

�rst order derivatives as t ↑ ω and indicated the number of such solutions.

1 Section with results

To formulate the main results, we introduce the following de�nitions

De�nition 2. Let Y ∈ {0,∞}, ∆Y is some one-sided neighborhood of Y . Continuous-

di�erentiable function L : ∆Y →]0; +∞[ is called ( [8], p.2-3) a normalized slowly varying

function as z → Y (z ∈ ∆Y ) if the next statement is valid

lim
y→Y
y∈∆Y

yL′(y)

L(y)
= 0.

De�nition 3. We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y →]0; +∞[

satis�es the condition S as z → Y , if for any continuous di�erentiable normalized slowly

varying as z → Y (z ∈ ∆Y ) function L : ∆Yi →]0; +∞[ the next relation is valid

θ(zL(z)) = θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y ).

Condition S is satis�ed, for example, for such functions as ln |y|, | ln |y||µ (µ ∈ R), ln ln |y|.
The following theorem is obtained in our previous work [2] and contains a necessary

conditions for the existence the Pω(Y0, Y1,±∞)-solution of the equation (1).

Theorem 1. [2] Let for equation (1) σ1 6= 1, the function ϕ1(y
′)|y′|−σ1 satis�es the condition

S as y′ → Y1 (y′ ∈ ∆Y1) Then, each Pω(Y0, Y1,±∞)-solution of the di�erential equation

(1) can be represented as

y(t) = πω(t)L(t), (5)

where L : [t0, ω[→ R is twice continuously di�erentiable on ∆Y0 and satis�es the next

conditions

y00πω(t)L(t) > 0, L′(t) 6= 0 as t ∈ [t1, ω[ (t0 ≤ t1 < ω), (6)

lim
t↑ω

L(t) ∈ {0;±∞}, lim
t↑ω

πω(t)L(t) = Y0, lim
t↑ω

πω(t)L′(t)

L(t)
= 0. (7)
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Thus, in the case of the existence of a �nite or in�nite limit

lim
t↑ω

πω(t)L′′(t)

L′(t)
,

the following relations take place

lim
t↑ω

πω(t)L′′(t)

L′(t)
= −1, α0L

′(t) > 0 as t ∈ [t1, ω[(t0 ≤ t1 < ω), (8)

p(t) =
α0L

′(t)

ϕ1(L(t))ϕ0(πω(t)L(t))
[1 + o(1)] as t ↑ ω. (9)

Let's introduce the following de�nition.

De�nition 4. We say that the condition N is satis�ed for the equation (1) if for some

continuously di�erentiable function L(t) : [t0, ω[−→ R(t0 ∈ [a, ω[), which satis�es conditions

(6)�(7) and (8), the following representation takes place

p(t) =
α0L

′(t)

ϕ1(L(t))ϕ0(πω(t)L(t))
[1 + r(t)], (10)

where r(t) : [t0, ω[−→]− 1; +∞[ us a continuous function that tends to zero as t ↑ ω.

To formulate the su�cient conditions for the existence the Pω(Y0, Y1,±∞)-solution of the

equation (1) let's introduce some notations.

µ0 = signϕ′0(y), θ1(y
′) = ϕ1(y

′)|y′|−σ1 ,

H(t) =
L2(t)ϕ′0(πω(t)L(t))

L′(t)ϕ0(πω(t)L(t))
, q1(t) =

(
ϕ′

0(y)

ϕ0(y)

)′
(
ϕ′

0(y)

ϕ0(y)

)2
∣∣∣∣∣
y=πω(t)L(t)

,

e1(t) = 1 +
πω(t)L′(t)

L(t)
, e2(t) = 2 +

πω(t)L′′(t)

L′(t)
.

For these functions, from (2), (6) and (7) the following statements are ful�lled:

1)

lim
t↑ω

e1(t) = lim
t↑ω

e2(t) = 1, lim
t↑ω

H(t) = ±∞, lim
t↑ω

q1(t) = 0, (11)

2) If the next limit

lim
t↑ω

L(t)

L′(t)
· H

′(t)

|H(t)| 32
,

exists, then

lim
t↑ω

L(t)

L′(t)
· H

′(t)

|H(t)| 32
= 0. (12)

The su�cient conditions for the existence the of Pω(Y0, Y1,±∞)-solutions of the equation

(1) in case
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lim
t↑ω

πω(t)L′(t)

L(t)
|H(t)|

1
2 = ±∞.

were found in [2].

In this work we suppose that

lim
t↑ω

πω(t)L′(t)

L(t)
|H(t)|

1
2 = γ, 0 < |γ| < +∞. (13)

The su�cient conditions for this case are formulated in the following theorem

Theorem 2. Let for equation (1) σ1 6= 1, the function ϕ1(y
′)|y′|−σ1 satis�es the condition

S as y′ → Y1 (y′ ∈ ∆Y1), the conditions N , (12) and (13) are taken place.

Then in case α0µ0 > 0, the di�erential equation (1) has a one-parameter family of

Pω(Y0, Y1,±∞)-solutions,

in case α0µ0 < 0 and y00α0γπω(t) < 0 the di�erential equation (1) has a two-parameter

family of Pω(Y0, Y1,±∞)-solutions,

and in case α0µ0 < 0 and y00α0γπω(t) > 0 the di�erential equation (1) has at least one of

Pω(Y0, Y1,±∞)-solutions.

For each of such solutions the following asymptotic representations take place as t ↑ ω.

y(t) = πω(t) · L(t) +
ϕ0(πω(t)L(t))

ϕ′0(πω(t)L(t))
· o(1), (14)

y′(t) = [L(t) + πω(t) · L′(t)] · [1 + |H(t)|−
1
2 · o(1)]. (15)

Proof. We apply to the equation (1) the transformation y(t) = πω(t) · L(t) +
ϕ0(πω(t) · L(t))
ϕ′0(πω(t) · L(t))

· z1(t),

y′(t) = [L(t) + πω(t) · L′(t)] · [1 + z2(t)],
(16)

and reduce the system (16) into the following system of di�erential equations
z′1 = L(t) · e1(t) ·

ϕ′0(πω(t)L(t))
ϕ0(πω(t)L(t))

· [q1(t)z1 + z2],

z′2 =
L′(t)
L(t)

· e2(t)
e1(t)

×

×
[
α0p(t)|e1(t) · L(t)|σ1θ1(L(t))ϕ0(Y1(t, z2)) ·K(t, z2)

L′(t) · e2(t)
· [1 + z2]

σ1 − [1 + z2]

]
,

(17)

in which

K(t, z2) =
θ1(Y2(t, z2))

θ1(L(t))
, Y1(t, z1) = πω(t)L(t) +

ϕ0(πω(t)L(t))

ϕ′0(πω(t)L(t))
· z1,

Y2(t, z2) = [L(t) + πω(t)L′(t)] · [1 + z2].
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From the conditions that
[L(t) + πω(t)L′(t)]

L(t)
· [1 + z2(t)] is a slowly varying function, the

function θ1 satis�es the condition S, we have

lim
t↑ω

K(t, z2) = 1 uniformly on z2 ∈
[
−1

2
,
1

2

]
. (18)

According to the condition N we have

α0p(t)|L(t)|σ1θ1(L(t))ϕ0(Y1(t, z1))

L′(t)
=

ϕ0(Y1(t, z1))

ϕ0(πω(t)L(t))
[1 + r(t)] (19)

Decomposing the right-hand side of (19) at a �xed t ∈ [t1;ω[ by the Maclaurin formula

up to the second order in a variable z1 with a Lagrange-shaped residue, we have

ϕ0(Y1(t, z1))

ϕ0(πω(t)L(t))
· [1 + r(t)] = [1 + r(t)] · (1 + z1) +R(t, z1),

in which

R(t, z1) = [1 + r(t)] ·
ϕ′′0

(
πω(t)L(t) +

ϕ0(πω(t) · L(t))
ϕ′0(πω(t) · L(t))

· ξ
)
ϕ0(πω(t)L(t))

ϕ′0(πω(t)L(t))
· z21 ,

|ξ| < |z1|.

Y1(t, z1) = πω(t)L(t))

1 +
1

πω(t)L(t))ϕ′0(πω(t)L(t))

ϕ0(πω(t)L(t))

ξ

 .
From the conditions (2) and (16) it follows that

ϕ′′0

(
πω(t)L(t) +

ϕ′0(πω(t) · L(t))

ϕ0(πω(t) · L(t))
· ξ
)

=

ϕ′20

(
πω(t)L(t) +

ϕ′0(πω(t) · L(t))
ϕ0(πω(t) · L(t))

· ξ
)

ϕ0

(
πω(t)L(t) +

ϕ′0(πω(t) · L(t))
ϕ0(πω(t) · L(t))

· ξ
)×

×[1 + d1(t, z1)],

where

lim
t↑ω

d1(t, z1) = 0 uniformly on z1 ∈
[
−1

2
,
1

2

]
.

It follows from the lemma 1.2. at [4] that if ϕ0, ϕ
′
0 ∈ ΓY0(Z0) with the additional function

g(y) = ϕ0(y)
ϕ′

0(y)
, we have

ϕ′′0

(
πω(t)L(t) +

ϕ′0(πω(t)L(t))

ϕ0(πω(t)L(t))
· ξ
)

=
ϕ′20 (πω(t)L(t))

ϕ0(πω(t)L(t))
eξ[1 + d1(t, z1)],

where

lim
t↑ω

d1(t, z1)= 0 uniformly on z1 ∈
[
−1

2
,
1

2

]
.
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Thus, it is shown that for anyone ε > 0 there are exist t1 ∈ [t0;ω[ and 0 < δ ≤ 1
2
, such

that

|R(t, z1)| ≤ (1 + ε)|z1|2 as t ∈ [t1;ω[, |z1| ≤ δ.

Choose the number ε > 0 and let's consider the system (17) on the set

Ω = [t1;ω[×D, where D = {(z1; z2) ∈ R2, |z1| ≤ δ, |z2| ≤
1

2
}.

System (17) on the set Ω has the form z′1 = L(t) · e1(t) ·
ϕ′0(πω(t)L(t))
ϕ0(πω(t)L(t))

· [q1(t)z1 + z2],

z′2 = L′(t)
L(t)
· e2(t)
e1(t)
· [A21(t)z1 + A22(t)z2 +R1(t, z1, z2) +R2(t, z1, z2)] ,

(20)

in which

A21(t) =
[1 + r(t)] ·K(t, z2)e

σ1
1 (t)

e2(t)
, A22(t) = A21 · σ1 − 1,

R1(t, z1, z2) = A21(t)− 1,

R2(t, z1, z2) = A21(t)z1([1 + z2]
σ1 − 1) +

A21(t)R(t, z1)

1 + r(t)
[1 + z2]

σ1+

+A21(t)([1 + z2]
σ1 − 1− σ1z2)

Note that from (11) and (18) it follows that

lim
t↑ω

A21 = 1, lim
t↑ω

A22 = σ1 − 1,

lim
t→+∞

R1(t; z1; z2)= 0 uniformly on (z1, z2) : |zi| <
1

2
, i = 1, 2.

lim
|z1|+|z2|→0

R2(t; z1; z2)

|z1|+ |z2|
= 0 uniformly on t ∈ [t1;ω[.

We apply an additional transformation to the system (20){
z1(t) = v1(t),

z2(t) = |H(t)|− 1
2v2(t).

(21)

Finally we have



v′1 = h(t)[c11(t)v1 + c12v2],

v′2 = h(t)

[
H ′(t)signH(t)

2|H(t)|
3
2

v2 +
e2(t)
e21(t)

A21v1+

+
e2(t)
e21(t)

A22

|H(t)|
1
2

v2 +
e2(t)
e21(t)

R1(t, v1, |H(t)|− 1
2v2(t)) +

e2(t)
e21(t)

R2(t, v1, |H(t)|− 1
2v2(t))

]
,

(22)
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where

h(t) =
L′(t)e1(t)

L(t)
|H(t)|

1
2 , c11 = α0µ0q1(t)|H(t)|

1
2 , c12 = α0µ0

From the (6)�(8), (11) and (12) it follows that

t∫
t1

h(τ)dτ = ±∞,

lim
t↑ω

e2(t)

e21(t)

A22

|H(t)| 12
= 0,

lim
t↑ω

1

2

H ′(t)signH(t)

|H(t)| 32
= 0,

lim
|v1|+|v2|→0

R2(t, v1, |H(t)|− 1
2v2(t))

|v1|+ |v2|
= 0 uniformly on t ∈ [t1;ω[.

Then we must to �nd the lim
t↑ω

c11(t). Let's consider

H ′(t) =

(
L2(t)

L′(t)

)′
· ϕ
′
0(πω(t)L(t))

ϕ0(πω(t)L(t))
+
L2(t)

L′(t)
· (L(t) + πω(t)L(t)) ·

(
ϕ′0(y)

ϕ0(y)

)′∣∣∣∣∣
y=πω(t)L(t)

,

then (
ϕ′0(y)

ϕ0(y)

)′∣∣∣∣∣
y=πω(t)L(t)

=
H ′(t)

L2(t)
L′(t)
· (L(t) + πω(t)L(t))

− ϕ′0(πω(t)L(t))

ϕ0(πω(t)L(t))
×

×
L2(t)
L′(t)

L2(t)
L′(t)
· (L(t) + πω(t)L(t))

.

Then we have

q1(t)|H(t)|
1
2 =

L(t)

L′(t)e1(t)
· H

′(t)

|H(t)| 32
− 1 + o(1)

πω(t)L′(t)
L(t)

· e1(t)|H(t)| 12 · signH ′(t)
ïðè t ↑ ω. (23)

The �rst term from (23) equals to zero according to (11) and (12), the second term equals

to − 1
γ
due to the condition (13). So, we have

lim
t↑ω

c11(t) = −α0µ0

γ

Characteristic equation of the boundary matrix of coe�cients at v1 and v2(
−α0µ0

γ
α0µ0

1 0

)
has the form

λ2 +
α0µ0

γ
λ− α0µ0 = 0.
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This equation has no roots which real part equals to zero.

In the case α0µ0 > 0(α0µ0 = 1) the characteristic equation has two real roots with

opposite signs. So, according to the theorem 2.2 from [7] the system (22) has one-parameter

family of solutions that tend to zero as the argument tends to +∞.

In the case α0µ0 < 0(α0µ0 = −1) the characteristic equation has two real roots with or

two complex roots with the real part of the same sign as γ.

According to the condition N

signh(t) = α0y
0
0signπω(t).

So, according to results in [7] n case α0µ0 < 0 and y00α0γπω(t) < 0 the system (22) has a

two-parameter family of solutions that tend to zero as the argument tends to +∞ i and in

case α0µ0 < 0 and y00α0γπω(t) > 0 � has at least one of such solutions.

Each of such solutions of the system (22) due to transformations (16) and (21) corresponds

to the solution of the equation (1) which have the representations (14)�(15). It is clear that

obtained solutions are indeed Pω(Y0, Y1, λ0)-solutions of the equation (1). The theorem is

proved in a whole.
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×åïîê Î. Î. Àñèìïòîòè÷íi çîáðàæåííÿ ðîçâ'ÿçêiâ ç ïîâiëüíî çìiííèìè ïîõiäíèìè

äèôåðåíöiàëüíèõ ðiâíÿíü äðóãîãî ïîðÿäêó ç äîáóòêîì ðiçíîãî òèïó íåëiíiéíîñòåé // Áóêîâèíñüêè�è

ìàòåì. æóðíàë � 2020. � Ò.8, �1. � C. 10�19.

Iñòîòíî íåëiíiéíi íåàâòîíîìíi äèôåðåíöiàëüíi ðiâíÿííÿ ïî÷àëè âèíèêàòè íà ïðàêòèöi

ç äðóãî¨ ïîëîâèíè äåâ'ÿòíàäöÿòîãî ñòîëiòòÿ ïðè äîñëiäæåííi ðåàëüíèõ ôiçè÷íèõ ïðîöå-

ñiâ àòîìíî¨ i ÿäåðíî¨ ôiçèêè, à òàêîæ, àñòîôiçèêè. Ó ðîáîòi ðîçãëÿäà¹òüñÿ äèôåðåíöiàëå

ðiâíÿíÿ, ÿêå ìiñòèòü ó ïðàâié ÷àñòèíi äîáóòîê ïðàâèëüíî òà øâèäêî çìiííèõ íåëiíiéíî-

ñòåé âiä íåâiäîìî¨ ôóíêöi¨ òà ¨¨ ïîõiäíî¨ ïåðøîãî ïîðÿäêó. Îêðåìi âèïàäêè òàêèõ ðiâíÿíü

âèíèêàþòü, íàñàìïåðåä, ó òåîði¨ ãîðiííÿ òà òåîði¨ ïëàçìè. Ïåðøi âàæëèâi ðåçóëüòàòè

ùîäî àñèìïòîòè÷íî¨ ïîâåäiíêè ðîçâ'ÿçêiâ òàêèõ ðiâíÿíü áóëî îòðèìàíî äëÿ äèôåðåíöi-

àëüíîãî ðiâíÿííÿ äðóãîãî ïîðÿäêó, ÿêå ó ïðàâié ÷àñòèíi ìiñòèëî äîáóòîê ñòåïåíåâî¨ òà

åêñïîíåíöiàëüíî¨ íåëiíiéíîñòåé. Äëÿ çàãàëüíîãî âèïàäêó òàêèõ ðiâíÿíü ðåçóëüòàòiâ ðàíi-

øå îòðèìàíî íå áóëî. Ó çâ'ÿçêó ç öèì, äîñëiäæåííÿ àñèìïòîòè÷íî¨ ïîâåäiíêè ðîçâ'ÿçêiâ

íåëiíiéíèõ äèôåðåíöiàëüíèõ ðiâíÿíü äðóãîãî ïîðÿäêó, ùî ìiñòÿòü äîáóòîê ïðàâèëüíî òà

øâèäêî çìiííèõ íåëiíiéíîñòåé ïðè ïðÿìóâàííi àðãóìåíòó àáî äî íóëÿ, àáî äî íåñêií÷åí-

íîñòi, ¹ àêòóàëüíèì íå ëèøå ç òåîðåòè÷íî¨, à é ç ïðàêòè÷íî¨ òî÷êè çîðó. Ó äàíié ðîáîòi

äîñëiäæóþòüñÿ àñèìïòîòè÷íi çîáðàæåííÿ, à òàêîæ íåîáõiäíi i äîñòàòíi óìîâè iñíóâàííÿ

Pω(Y0, Y1,±∞)-ðîçâ'ÿçêiâ òàêîãî ðiâíÿííÿ. Öåé êëàñ ðîçâ'ÿçêiâ ¹ îäíèì ç íàéñêëàäíiøèõ

äëÿ äîñëiäæåííÿ çà ðàõóíîê òîãî, ùî, çâàæàþ÷è íà àïðiîðíi âëàñòèâîòñi ôóíêöié öüîãî

êëàñó, ¨õ ïîõiäíà äðóãîãî ïîðÿäêó ó ÿâíîìó âèãëÿäi íå âèðàæà¹òüñÿ ÷åðåç ïîõiäíó ïåðøîãî

ïîðÿäêó. Ðåçóëüòàòè, îòðèìàíi ó öié ñòàòòi äîïîâíþþòü îòðèìàíi ðàíiøå ðåçóëüòàòè äëÿ

Pω(Y0, Y1,±∞)-ðîçâ'ÿçêiâ äîñëiäæóâàíîãî ðiâíÿííÿ ùîäî äîñòàòíiõ óìîâ ¨õ iñíóâàííÿ òà

êiëüêîñòi.


